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Lecture 3:
Sample and Hold Circuits

Switched Capacitor Circuits
 Circuits and Systems

– Sampling
– Signal Processing
– Sample and Hold

 Analogue Circuits
– Switched Capacitor Circuits



Signal Characterisation
 Value and timing can be continuous or discrete
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Time-continuous Signals
 Continuous or analogue signal

– The signal is continuous in value (amplitude) and time
– The signal is a continuous function of time
– Examples: voltage, v(t), sound pressure p(t)
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 Digitized signal
– The signal is discrete in value but not in time
– Change of value can occur at any instance in time
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Time-discrete Signals
 Time discrete signals: function values between sampling points do not 

exit
– They are not zero
– Time discrete signals usually are created by sampling of analogue signals
A(t) → a(nT)

• T: sampling time , 1/T: sampling rate, sampling frequency

 Discrete time signal: signal is continuous in amplitude and time-discrete
– Usually sampling occurs at a fixed time interval
– Or the sample times are known (otherwise loss of information)
– Nyquist theorem: sampling frequency larger than twice the highest 

analogue frequency content
• No information loss
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Digital Signals
 Digital signals are discrete in value (amplitude) and time-discrete

– Usually (but not always) a fixed clock frequency is assumed
– Amplitude discretization means information loss
– n-bit binary signal with 2N possible values
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Signal Characterisation
 Value and timing can be time-continuous or discrete
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Time-discrete Signals

 A signal is a mathematical function of the independent variable t
 For t continuous, the signal is time-continuous: analogue signal
 If t is only defined for discrete values, we have a time-discrete signal or 

sequence x[n]
 Typically, the sequence x[n] is created by a discretisation of time by 

(ideal) sampling at the interval Ts.
 x[n] = x(t=nTs)
 Examples:
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Discrete Dirac impulse

Kronecker-function

Shifted discrete Dirac impulse
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Elementary Time-discrete 
Signals

 Unit step sequence

 Sampled Sine/Cosine signal

– With normalized sampling frequency:

 Rectangular impulse with width 2N+1
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 Any time discrete sequence can represented by time-shifted unit pulses

 Example

Time-discrete Signals As Sum 
of Unit Pulses
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 A time discrete signal is periodic with a period N if:

 N: Period: smallest positive N that fulfils above equation: fundamental 
period.

 Note: The discrete sine function x[n] = sin(2 f0nTs) is in general not 
periodic. 
– It is only periodic of the ratio T0 / Ts =  fs / f0 is an integer.

Periodic Time-discrete 
Signals
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 Definition Signal to Noise Ratio

Dynamic Range

SNRDigital = 10 log22
N

SNRAnalog = 10 log2
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Enhancing Analog Dynamic 
Range

Solution:

Chip cooling

Increase power

supply voltage

Noise reduction using

averaging /circuit tricks

Increasing of

components area

Equipment cost &

volume problems

Voltage breakdown; power consumption

Moderate increase of chip

area & speed reduction

Drastic increase of chip area

Potential problems:



Comparison Analog/Digital 
Dynamic Range

Analog design Digital design

Signals have a range of values 

for amplitude and time

Signal have only two states

Irregular blocks Regular blocks

Customized Standardized

Components have a range of 

values

Components with fixed values

Requires precise modelling Modelling can be simplified

Difficult to use with CAD Amenable to CAD methodology

Designed at the circuit level Designed at the system level

Longer design times Short design times

Two or three tries are necessary 

for success

Successful circuits the first time

Difficult to test Amenable to design for test



Comparison of Analog and 
Digital Circuit

Analog

In

VDD

Out

Digital

In

VDD

Out

Analog

Out

In

VSS

VDD

Power supply noise immunity

Low High High

Functional density

High High Low



 Ideal capacitors are noiseless
 But capacitors always have to be charged through a resistor
 Noise accumulated on a capacitor is independent of the charging resistor

– Noise bandwidth and resistor value cancel out 
– For low noise, decrease temperature or increase capacitor
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 Ideal capacitors are noiseless
 But capacitors always have to be charged through a resistor
 Noise accumulated on a capacitor is independent of the charging resistor

– Noise bandwidth and resistor value cancel out 

kT/C Noise RC Circuit
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 S/H is used to sample an analog signal and to store its value for some 
length of time

 Also called “track-and-hold” circuits
– Often needed in A/D converters
– Conversion may require held signal

• reduces errors due to different delay times in A/D converter

 Performance parameter and errors in S/H:
 Sampling pedestal or Hold Step

– errors in going from track to hold: held voltage is different to sampled input 
voltage

– should be minimized and signal independent for no distortion

 Signal feedthrough: should be small during hold
 Speed at which S/H can track input voltage

– limitations to bandwidth and slew-rate

 Droop rate: slow change in output voltage during hold mode
 Aperture (or sampling) jitter — effective sampling time changing every T

– difficult in high-speed designs

 Other errors: dynamic range, linearity, gain, and offset error

Sample and Hold Circuits



 If φclk is high, V’ follows Vin

 If φclk is low, V’ will stay constant, keeping the value when went φclk low
 Basic circuit has some practical problems: Charge Injection of Q1

– Causes (negative) hold step

 Aperture Jitter
– Sampling time variation as a function of Vin

Basic Concept



 When φclk goes low, channel charge on Q1 causes V’ to have negative 
step
– If clock edge is fast, 1/2 flows each way

 Channel charge:

 Resulting in:

Charge Injection



 ΔV‘ linearly related to Vin: gain error
 ΔV‘ also linearly related to Vtn, which is nonlinearly related to Vin:

distortion error (due to Body effect)
– Often gain error can be tolerated but not distortion

 Additional change in V’ due to the overlap capacitances

 Causes DC offset effect
– Which is signal independent
– Usually smaller than charge injection component
– Can be important of Clk signal has power supply noise → can lead to poor 

power-supply rejection ratio

Charge Injection



 Transmission gate: Charge of equally sized p and n transistor cancel out
– Charge only cancel when Vin in middle between VDD and VSS

– Finite slopes of clock edges make turn of times of p and n transistor 
different and signal dependent

 Dummy switch: clocked by inverse Clk
– Q2 is 1/2 size of Q1 to match charge injection
– up to 5 times better than without dummy switch (for fast Clk edges)
– difficult to make clocks fast enough so exactly 1/2 charge is injected

S/H Charge Reduction



 Ideal sampling time at the negative-going zero-crossing of φclk

 Actual sampling at VClk = Vin + Vtn
– Q1 turns off

 True sampling time depends on value of Vin: distortion

Finite Slopes of Clock Edges



 When the clock φclk is high, the circuit responds similarly to an Opamp in 
a unity-gain feedback configuration

 When goes low, Vin at that time is stored on Chld, similarly to a simple S/H
 DC offset of buffer is divided by the gain of input Opamp
 Disadvantages:

– in hold mode, the Opamp is open loop, resulting in its output saturating at 
one of the power supply voltages
• Opamp must have fast slew rate to go from saturation to Vin in next Clk cycle

– Sample time, charge injection — input signal dependent
– Speed reduced due to overall feedback

S/H With High Input Impedance



 In Hold mode, Q2 keeps the output of the first Opamp close to the 
voltage it will need to be at when the S/H goes into track mode

 Sample time, charge injection - input signal dependent

Reduced Slew Rate Requirement



 Chld is not to Gnd
 Q1 always at virtual ground; signals on both sides are independent of Vin

– Sample time error, charge injection:  independent of Vin

– Charge injection causes ONLY DC offset

 Q2 used to clamp Opamp1 output near ground in hold mode
– Reduces slew rate requirement snd signal feedthrough

 Slower due to two Opamps in feedback

Input Signal Independence



 Charge injected by Q1 matched by Q2 into C’hld

– If fully differential design, matching occurs naturally leading to lower offset.

Reduced Offset (Single Ended)



 Gnd is common mode voltage

Reduced Offset (Differential)



 Inverting S/H
– When in track mode, Q1 is on and Q2 is off, resulting in the S/H acting as an 

inverting low-pass circuit with Ω-3dB = 1/(RC)
– When Q1 turns off, Vout will remain constant

 Needs Opamp capable of driving resistive loads
– Difficult to implement in CMOS

 Good high-speed BiCMOS configuration
 Q2 minimizes feedthrough

Example 1: BiCMOS



 Opamp in unity gain follower mode during track
 In hold mode input signal is stored across C1, since Q1 is turned off
 Charge injection of transistors cancel
 Clock signals are signal dependent
 Good speed, moderate accuracy

Example 2



 Hold capacitor is large Miller capacitor
 Can use smaller capacitors and switches — good speed
 If Q2 turned off first, injection of Q1 small due to Miller effect

Example 3



 Miller capacitor: 

 Higher speed amplifier possible as Opamp output voltage swing is small
 Allows small capacitors and switch sizes

Example 3

 Sample mode:
– Opamp is reset
– C1 and C2 between Vin and V-

of Opamp

 Hold mode:
– Effective hold cap is Chld-eff



 For lower frequency application
– Based on switched capacitor circuits

 During φ1:
– CH is connected between the input signal source and the inverting input of the 

Opamp
– inverting input and the output of the opamp are connected together

• This causes the voltages at both of these nodes to be equal to the input-offset 
voltage of the Opamp, therefore CH charged to Vin - Voff

 Accurate since offset cancellation performed
– During φ1 Vout = Vin independent of the Opamp offset voltage

 Slow since Opamp swings from 0 to Vin every cycle
 Not really a S/H

– Output not valid during φ1

Example 4



 Improved accuracy
 High input impedance
 φ1a → advanced
 Charge injection of Q4 and Q5 

cancel (and is signal independent)
 Charge injection of Q1 and Q2: no 

effect
 Charge injection of Q3: reduced as 

before

Example 5

In Hold mode



 Switched capacitor (SC) circuits are probably the most popular integrated 
circuit analogue circuit technique

 SC operate at discrete time / analogue amplitude
 For the analysis z-transform is most appropriate
 Especially popular for filters

– Good linearity, accurate frequency response, high dynamic range
– Filter coefficients make use of capacitance ratios

Switched Capacitor Circuits



 Basic principles
– Signal entered and read out as voltages, but processed internally as charges 

on capacitors. 
– Since CMOS preserves charges well, high SNR and linearity are possible. 

 Significance
– Replaces absolute accuracy of R & C (10-30%) with matching accuracy of C 

(0.05-0.2%) 
– Can realize accurate and tunable large RC time constants 
– Can realize high-order circuits with high dynamic range 
– Allows (medium-) accuracy data conversion without trimming 
– Can realize large mixed-mode systems for telephony, audio, aerospace, 

consumer etc. applications on a single CMOS chip 
– Tilted the MOS VS. BJT contest decisively. 

Switched Capacitor Circuits



SC Building Blocks

 Opamps
– Ideal Opamps usually assumed
– Important non-idealities

• dc gain: sets the accuracy of charge transfer hence, transfer-function accuracy
• unity-gain frequency, phase margin & slew-rate: sets the max clocking 

frequency. 
• A general rule is that unity-gain frequency should be 5 times (or more) higher 

than the clock-frequency
• dc offset: Can create dc offset at output. Circuit techniques to combat this which 

also reduce 1/f noise.



SC Building Blocks

 Double Poly Capacitors
– Substantial parasitics with large bottom plate capacitance (20% of C1 )

 Sometimes metal-metal capacitors are used but have even larger parasitic 
capacitances.



SC Building Blocks

 Switches
– Mosfet switches are good switches off-resistance near GΩ range
– on-resistance in 100Ω to 5kΩ range (depends on transistor sizing)
– However, have non-linear parasitic capacitances
– When φ high, switch is on



SC Building Blocks

 Non-overlapping clocks
– Non-overlapping clocks — both clocks are never High at same time
– Needed to ensure charge is not inadvertently lost
– Integer values occur at end of φ1 i.e. (n-1), n, (n+1) …
– End of φ2 is 1/2 of integer value, i.e. (n-3/2), (n-1/2), (n+1/2) …



Basic Operating Principle 

 Switched-capacitor resistor equivalent
– C1 charged to V1 and then to V2 during each Clk period T

– Average current is given by:



Basic Operating Principle 

 Switched-capacitor resistor equivalent
– For equivalent resistor can be calculated from:

– Therefore:

– This equivalence is useful when looking at low-frequency portion of a SC-circuit
– For higher frequencies, discrete-time analysis is used.



Example Resistor Equivalence

 What is the equivalent resistance of a 5pF capacitance sampled at a clock 
frequency of 100kHz?

– large equivalent resistance of 2MΩ can be realized
– Requires only 2 transistors, a clock and a relatively small capacitance
– In a typical CMOS process, such a large resistor would normally require a huge 

amount of silicon area.



Integrator (Parasitic Sensitive)

 Switched capacitor discrete time integrator
– Extra switch at the output indicates that the output signal is valid at the end of φ1

– Input can change at any point in time – it is sampled at the end of φ1

– Simplest circuit design but sensitive to parasitics (not shown)

– Calculate vco(t) at the end φ1 of as a function of vci(t) at the end of φ1



Integrator (Parasitic Sensitive)

 Circuit diagrams for φ1 high and for φ2 high

 Charge on C2 is equal to C2*vco(nT-T) when φ1 is turning off
 Charge on C1 is equal to C1*vci(nT-T) when φ1 is turning off
 When φ2 goes high C1 is discharged (due to virtual ground on its top 

plate)
– Charge is transferred to C2 adding to the charge present there
– Positive input voltage will result in a negative voltage across C2 (inverting integrator)

 So, at the end of φ2 :    



Integrator (Parasitic Sensitive)

 Circuit diagrams for φ1 high and for φ2 high

 What is the charge on C2 at the end of φ1 (as indicated by the additional 
φ1  switch at the output)?
– When φ2 turns off, the charge on C2 is preserved during the next φ1 phase (until φ2 

turns on again in the next cycle)
– Therefore the charge on C2 at time nT at the end of the next φ1 is equal to that at 

time (nT-T/2)

 Therefore:



Integrator (Parasitic Sensitive)

 Circuit diagrams for φ1 high and for φ2 high

 Dividing by C2 and introducing discrete time variables vi(n)=vci(nT) and 
vo(n)=vco(nT):

 Taking the z-transform: 𝑉𝑜 𝑧 = 𝑧−1𝑉𝑜 𝑧 −
𝐶1

𝐶2
𝑧−1𝑉1(𝑧)

 Integrator Transfer Function: 



 Circuit diagrams for φ1 high and for φ2 high

 Integrator Transfer Function:

 Gain depends only on capacitor ratios!
– Very accurate transfer functions can be realised! 

Integrator (Parasitic Sensitive)



Typical Waveforms

 Transfer function is only valid at the time nT just before the end of φ1

– Discrete time relationship of voi(t) and vco(t) is valid only at times (nT) –
at the end of φ1



Low Frequency Behaviour

 The transfer function can be rewritten as:

 Recall that:

 With T=
1

𝑓𝑠
→    

 Therefore: 

 For wT<<1 (i.e. at low frequency)



Low Frequency Behaviour

 For wT<<1 (i.e. at low frequency)

 This is the same transfer function as a continuous-time integrator 
with a gain constant of:

 The gain is a function of the capacitor ratio and the sampling time



Parasitic Effects

 Assuming double poly capacitors, the circuit diagram with parasitic 
capacitances is:

 The transfer function modifies to:

 Therefore, gain coefficient is not well controlled and partially non-
linear, as Cp1 is non-linear

Cp1: parasitic capacitances of C1, top 

plate and nonlinear capacitances of 

the two switches

Cp2: parasitic capacitances of C1, 

bottom plate

Cp3: parasitic capacitances of C2, top 

plate and input capacitances of 

Opamp and of f2 switch

Cp3: parasitic capacitances of C2, 

bottom plate (and output 

capacitance)



Parasitic Insensitive Integrator

 By using 2 extra switches, integrator can be made insensitive to 
parasitic capacitances
– more accurate transfer-functions
– better linearity (since non-linear capacitances unimportant)

 Major development for SC circuits



Parasitic Insensitive Integrator

 Circuit diagrams for φ1 high and for φ2 high

 Same analysis as before except that C1 is switched in polarity 
before discharging into C2
– This results in vco(t) rising for a positive vci(nT-T)

 Therefore:

 Non-inverting amplifier!

 But full time period delay as 𝐻 𝑧 =
𝐶1

𝐶2

𝑧−1

1−𝑧−1



Parasitic Insensitive Integrator

 Circuit diagram with parasitic capacitances

 Cp3 has little effect since it is connected to virtual Ground
 Cp4 has little effect since it is driven by output
 Cp2 has little effect since it is either connected to virtual Ground or 

physical Ground



Parasitic Insensitive Integrator

 Cp1 is continuously being charged to vi(n) and discharged to ground
 φ1 high: the fact that Cp1 is also charged to vi(n-1) does not affect 

charge on C1

 φ2 high: Cp1 discharges through φ2 switch attached to its node and 
does not affect the charge accumulating on C2

 While the parasitic capacitances may slow down settling time 
behaviour, they do not affect the discrete time difference equation



Parasitic Insensitive Inverting 
Integrator

or 𝐻 𝑧 = −
𝐶1

𝐶2

1

1−𝑧−1

 Present output depends on present input (delay-free)

 Delay-free integrator has negative gain while delaying integrator 
has positive gain

 Delay free, parasitic insensitive inverting integrator:
– Same circuit, but switch phases at C1, top plate, are swapped



Signal Flow Graph Analysis

 For more complex circuits charge analysis can be tedious



Signal Flow Graph Analysis

 Superposition is used on the input-output relationship for V2(z) 
and V3(z) are given by:

 For the input V1(z), the input-output relationship is simply an 
inverting gain stage, with the input being sampled at the end of φ1

 Therefore:

𝑉𝑜 𝑧

𝑉2(𝑧)
=
𝐶2
𝐶𝐴

𝑧−1

1 − 𝑧−1

𝑉𝑜 𝑧

𝑉3(𝑧)
= −

𝐶3
𝐶𝐴

1

1 − 𝑧−1

𝑉𝑜 𝑧

𝑉1(𝑧)
= −

𝐶1
𝐶𝐴

𝑉𝑜 𝑧 = −
𝐶1
𝐶𝐴
𝑉1 𝑧 +

𝐶2
𝐶𝐴

𝑧−1

1 − 𝑧−1
𝑉2 𝑧 −

𝐶3
𝐶𝐴

1

1 − 𝑧−1
𝑉3 𝑧
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𝐶2
𝐶𝐴
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Signal Flow Graph Analysis

 In a flow graph the Opamp is separated from the inputs

 Opamp is represented by: 
1

𝐶𝐴

1

1−𝑧−1

 Non-switched capacitor input is represented by a gain of:
− 𝐶1 1 − 𝑧−1

 Delaying switched capacitor is represented by a gain of:
𝐶2𝑧

−1

 Non-delaying switched capacitor is represented by a gain of:
−𝐶3



Example First Order Filter

 Consider a general first order filter

 Start with an active-RC structure and replace resistors with SC 
equivalents

 Analyse using discrete-time analysis



Example First Order Filter

 Applying the flow chart rules



Example First Order Filter

 Transfer function can easily be derived



Example First Order Filter

 Find the pole of the transfer function by equating the 
denominator to zero:

– For positive capacitance values, zp is restricted to the real axis 
between 0 and 1 → circuit is always stable

 The zero is found by equating the numerator to zero to yield:

– Also restricted to real axis between 0 and 1

 The DC gain found evaluating the transfer function at z=1:



Numerical Example:
First Order Filter

 Find the capacitance values needed for a first-order SC-circuit such 
that its 3dB point is at 10kHz when a clock frequency of 100kHz is 
used.
– It is also desired that the filter have zero gain at 50kHz (i.e. z=-1) and the DC 

gain be unity
– Assume CA=10pF

 Solution:

– Making use of the bilinear transform 𝑝 =
𝑧−1

𝑧+1
the zero at -1 is mapped 

to Ω=∞
– The frequency warping maps the -3dB frequency of 10kHz (or 0.2

rad/sample) to:

 in the continuous-time domain leading to the continuous-time pole, pp, 
required being: pp=-0.3249



Numerical Example:
First Order Filter

 This pole is mapped backed to zp given by:

 Therefore, the transfer function H(z) is given by:

 where k is determined by setting the DC gain to one (i.e. H(1)=1) 
resulting in:

 Equating the these coefficients with the general first order transfer 
filter transfer function (and assuming CA=10pF):
C1=4.814pF; C2=-9.628pF; C3=9.628pF
– The negative capacitance can realised by using a differential input

or:



Switch Sharing
 Some switches of the first order SC circuit are redundant
 Switches that are always connected to the some potential can be 

shared
– The top plate of C2 and C3 are always switched to virtual Ground of 

the Opamp and physical Ground at the same time.
– Therefore one pair of these switches can be eliminated



Fully Differential Filters
 Most modern SC filters are fully-differential 
 Difference between two voltages represents signal (balanced 

around a common-mode voltage) 
 Common-mode noise, drift, etc. is rejected
 Even order distortion terms cancel



Fully Differential Filters
 Fully differential first order filter

– Two identical copies of the single-ended version



Fully Differential Filters
 Negative continuous-time input: equivalent to a negative C1



Fully Differential Filters
 Note that fully-differential version is essentially two copies of 

single-ended version, however ... area penalty not twice
 Only one opamp needed (though common-mode circuit also 

needed)
 Input and output signal swings have been doubled so that same 

dynamic range can be achieved with half capacitor sizes (from kt/C 
analysis)

 Switches can be reduced in size since small caps used
 However, there is more wiring in fully-differ version but better 

noise and distortion performance



Low-Q Biquad Filter
 Higher order filters require biquadratic transfer functions

 Using flow chart analysis, one can obtain:



Low-Q Biquad Filter
 Implemented as a SC:



Low-Q Biquad Filter
 Flow chart representation:



Low-Q Biquad Filter Design

 The individual coefficients of “z” can be equated by comparing to 
the transfer function

 A degree of freedom is available here in setting internal V1(z) 
output



Low-Q Biquad Filter Design
 Can do proper dynamic range scaling
 Or let the time-constants of 2 integrators be equal by:

 Low-Q Biquad Capacitance Ratio
 Comparing resistor circuit to SC circuit, we have

 However, the sampling-rate, 1/T , is typically much larger that the 
approximated pole-frequency ω0, so ω0 T<<1



Low-Q Biquad Capacitance Ratio
 Thus, the largest capacitors determining pole positions are the 

integrating capacitors C1 and C2

 If Q<1, the smallest capacitors are K4C1 and K5C2 resulting in an 
approximate capacitance spread of 1/ (ω0 T)

 If Q<1, then the smallest capacitor would be K6C2 resulting in an 
approximate capacitance spread of Q/(ω0 T)
– can be quite large for Q>>1

• due to a large damping resistor Q/ ω0



High-Q Biquad

 Use a high-Q biquad filter circuit when for Q>>1
 Q-damping done with a cap around both integrators
 Alternative active-RC prototype filter:



High-Q Biquad

 SC implementation
 Q-damping now performed by K6C1



High-Q Biquad

 Input K1C1: major path for lowpass
 Input K2C1: major path for band-pass filters
 Input K3C2: major path for high-pass filters
 General transfer-function is:

 If matched to the following general form:

 Freedom to determine the coefficients
– Reasonable choice is: 



Charge Injection

 To reduce charge injection (thereby improving distortion) , turn off 
certain switches first

 Advance φ1a and φ2a so that only their charge injection affect circuit
– result is a dc offset



Charge Injection

 Note: φ2a connected to ground φ1a while connected to virtual ground, 
therefore:
– can use single n-channel transistors
– charge injection NOT signal dependent

 Charge related to VGS and Vt

– Vt related to substrate-source voltage, thus Vt remains constant

 Source of Q3 and Q4 remains at 0 volts → amount of charge injected 
by Q3, Q4 is not signal dependent and can be considered as a DC 
offset



Charge Injection Example

 Estimate DC offset due to channel-charge injection when C1=0 and
C2 = C4 = 10C3 = 10pF 

 Assume switches Q3, Q4 have Vt=0.8V, W=30mm, L=0.8mm and 
Cox=1.9e-3 pF/mm2, and power supplies are ±2.5V

 Solution:
 Channel charge of Q3, Q4 (when on ) is:

 DC feedback keeps Opamp input at virtual ground (0V)



Charge Injection Example

 Charge transfer into given by:

 We estimate half channel-charges of Q3, Q4, are injected to the virtual 
ground leading to:

 Thus:

 DC offset affected by the capacitor sizes, switch sizes and power 
supply voltage



SC Gain Circuits – Parallel RC

 SC circuits can be used for signal amplification
 General Gain circuit with two parallel RC: 

 SC implementation:

 circuit amplifies 1/f noise 
as well as Opamp offset



SC Gain Circuits

 Resettable Gain Circuit
– Resets integrating capacitor C2 every clock cycle

 performs offset cancellation
 also highpass filters 1/f noise of Opamp
 However, requires a high slew-rate from Opamp



SC Gain Circuits

 Resettable Gain Circuit
 Offset cancellation



SC Gain Circuits

 Capacitive Reset
 Eliminate slew problem and still cancel offset by coupling Opamp’s

output to inverting input
 C4 is optional de-glitching capacitor



SC Gain Circuits

 Capacitive Reset

 During Reset

 During valid output



SC Gain Circuits

 Differential Capacitive Reset

 Accepts differential inputs and partially cancels switch clock-
feedthrough



Correlated Double Sampling (CDS)

 Preceding SC gain circuit is an example of CDS
– Minimizes errors due to Opamp offset and 1/f noise

 When CDS used, Opamps should have low thermal noise (often use n-
channel input transistors)

 Often use CDS in only a few stages:
– input stage for oversampling converter
– some stages in a filter (where low-frequency gain is high)

 Basic approach:
– Calibration phase: store input offset voltage
– Operation phase: error subtracted from signal



Better High-Freq CDS Amplifier

 φ2 : C1‘, C2‘ used but include errors
 φ1 : C1‘, C2‘ used but here no offset errors



CDS Integrator

 φ1 : sample offset on C2‘
 φ2 : C2‘ placed in series with Opamp to reduce error
 Offset errors reduced by Opamp gain
 Can also apply this technique to gain amps



SC Amplitude Modulator

 Square wave modulate by ±1 (i.e. Vout = ±Vin) 
 Makes use of cap-reset gain circuit
 φca : is the modulating signal



SC Full-Wave Rectifier

 Use square wave modulator and comparator to make
 For proper operation, comparator output should change 

synchronously with the sampling instances



SC Peak Detector

 Left circuit can be fast but less accurate
 Right circuit is more accurate due to feedback but slower due to need 

for compensation
– circuit might also slew so Opamp’s output should be clamped


