System on a Chip

Prof. Dr. Michael Kraft

Lecture 3: Sample and Hold Circuits Switched Capacitor Circuits

- Circuits and Systems
 - Sampling
 - Signal Processing
 - Sample and Hold
- Analogue Circuits
 - Switched Capacitor Circuits

Signal Characterisation

Value and timing can be continuous or discrete

Time-continuous Signals

- Continuous or analogue signal
 - The signal is continuous in value (amplitude) and time
 - The signal is a continuous function of time
 - Examples: voltage, v(t), sound pressure p(t)

- Digitized signal
 - The signal is discrete in value but not in time
 - Change of value can occur at any instance in time

Time-discrete Signals

- Time discrete signals: function values between sampling points do not exit
 - They are not zero
 - Time discrete signals usually are created by sampling of analogue signals $A(t) \rightarrow a(nT)$
 - T: sampling time , 1/T: sampling rate, sampling frequency

- Discrete time signal: signal is continuous in amplitude and time-discrete
 - Usually sampling occurs at a fixed time interval
 - Or the sample times are known (otherwise loss of information)
 - Nyquist theorem: sampling frequency larger than twice the highest analogue frequency content
 - No information loss

Digital Signals

- Digital signals are discrete in value (amplitude) and time-discrete
 - Usually (but not always) a fixed clock frequency is assumed
 - Amplitude discretization means information loss
 - n-bit binary signal with 2^N possible values

Signal Characterisation

Value and timing can be time-continuous or discrete

time-continuous

time-discrete

Time-discrete Signals

- A signal is a mathematical function of the independent variable *t*
- For t continuous, the signal is time-continuous: analogue signal
- If t is only defined for discrete values, we have a time-discrete signal or sequence x[n]
- Typically, the sequence x[n] is created by a discretisation of time by (ideal) sampling at the interval T_s.
- $x[n] = x(t=nT_s)$
- Examples:

Elementary Time-discrete Signals

Unit step sequence

$$u[n] = \begin{cases} 0 & \text{for } n < 0 \\ 1 & \text{for } n \ge 0 \end{cases}$$

Sampled Sine/Cosine signal

 $\mathbf{x}[n] = \cos(2\pi \ f_0 n T_{\rm S}) = \cos(\Omega n)$

With normalized sampling frequency:

 $\Omega = 2\pi f_0 T_{\rm S} = 2\pi f_0 / f_{\rm S}$

Rectangular impulse with width 2N+1

 $\operatorname{rect}_{N}[n] = \begin{cases} 1 & \text{for} \ |n| \le N \\ 0 & \text{otherwise} \end{cases}$

Time-discrete Signals As Sum of Unit Pulses

Any time discrete sequence can represented by time-shifted unit pulses

$$\mathbf{x}[n] = \sum_{i=-\infty}^{\infty} \mathbf{x}[i] \delta[n-i]$$

Example

Periodic Time-discrete Signals

• A time discrete signal is periodic with a period N if:

$$x_p[n] = x_p[n+N]$$

- N: Period: smallest positive N that fulfils above equation: fundamental period.
- Note: The discrete sine function x[n] = sin(2πf₀nT_s) is in general not periodic.
 - It is only periodic of the ratio $T_0 / T_s = f_s / f_0$ is an integer.

Dynamic Range

Definition Signal to Noise Ratio

 $SNR_{Digital} = 10 \log_2 2^N$

$$SNR_{Analog} = 10 \log \frac{V_{max, eff}^2}{\overline{V_n^2}}$$

Enhancing Analog Dynamic Range

Solution:

Chip cooling

Increase power supply voltage

Noise reduction using averaging /circuit tricks

Increasing of components area

Potential problems:

Equipment cost & volume problems

Voltage breakdown; power consumption

Moderate increase of chip area & speed reduction

Drastic increase of chip area

Comparison Analog/Digital Dynamic Range

Analog design	Digital design
Signals have a range of values for amplitude and time	Signal have only two states
Irregular blocks	Regular blocks
Customized	Standardized
Components have a range of values	Components with fixed values
Requires precise modelling	Modelling can be simplified
Difficult to use with CAD	Amenable to CAD methodology
Designed at the circuit level	Designed at the system level
Longer design times	Short design times
Two or three tries are necessary for success	Successful circuits the first time
Difficult to test	Amenable to design for test

Comparison of Analog and Digital Circuit

kT/C Noise RC Circuit

- Ideal capacitors are noiseless
- But capacitors always have to be charged through a resistor
- Noise accumulated on a capacitor is independent of the charging resistor
 - Noise bandwidth and resistor value cancel out
 - For low noise, decrease temperature or increase capacitor

Noise Power Density: 4 kTR

Eq. Noise Bandwidth: $\frac{1}{4}\frac{1}{RC} = \frac{\pi}{2}f_0$

Noise Power: kT/C

kT/C Noise RC Circuit

- Ideal capacitors are noiseless
- But capacitors always have to be charged through a resistor
- Noise accumulated on a capacitor is independent of the charging resistor
 - Noise bandwidth and resistor value cancel out

Sample and Hold Circuits

- S/H is used to sample an analog signal and to store its value for some length of time
- Also called "track-and-hold" circuits
 - Often needed in A/D converters
 - Conversion may require held signal
 - reduces errors due to different delay times in A/D converter
- Performance parameter and errors in S/H:
- Sampling pedestal or Hold Step
 - errors in going from track to hold: held voltage is different to sampled input voltage
 - should be minimized and signal independent for no distortion
- *Signal feedthrough:* should be small during hold
- *Speed* at which S/H can track input voltage
 - limitations to bandwidth and slew-rate
- Droop rate: slow change in output voltage during hold mode
- Aperture (or sampling) jitter effective sampling time changing every T
 - difficult in high-speed designs
- Other errors: dynamic range, linearity, gain, and offset error

Basic Concept

- If ϕ_{clk} is high, V' follows V_{in}
- If ϕ_{clk} is low, V' will stay constant, keeping the value when went ϕ_{clk} low
- Basic circuit has some practical problems: Charge Injection of Q1
 - Causes (negative) hold step
- Aperture Jitter
 - Sampling time variation as a function of V_{in}

Charge Injection

- When φ_{clk} goes low, channel charge on Q1 causes V' to have negative step
 - If clock edge is fast, 1/2 flows each way
- Channel charge:

$$\Delta Q_{C_{hld}} = \frac{Q_{CH}}{2} = \frac{C_{ox}WLV_{eff-1}}{2}$$
$$V_{eff-1} = V_{GS1} - V_{tn} = V_{DD} - V_{tn} - V_{in}$$

Resulting in:

$$\Delta V' = \frac{\Delta Q_{C-hld}}{C_{hld}} = -\frac{C_{ox}WL(V_{DD} - V_{tn} - V_{in})}{2C_{hld}}$$

Charge Injection

- ΔV' linearly related to V_{in}: gain error
- ΔV' also linearly related to V_{tn}, which is nonlinearly related to V_{in}: distortion error (due to Body effect)
 - Often gain error can be tolerated but not distortion
- Additional change in V' due to the overlap capacitances

$$\Delta V' \cong -\frac{C_{ox}WL_{ov}(V_{DD} - V_{SS})}{C_{hld}}$$

- Causes DC offset effect
 - Which is signal independent
 - Usually smaller than charge injection component
 - Can be important of Clk signal has power supply noise → can lead to poor power-supply rejection ratio

S/H Charge Reduction

- Transmission gate: Charge of equally sized p and n transistor cancel out
 - Charge only cancel when V_{in} in middle between V_{DD} and V_{SS}
 - Finite slopes of clock edges make turn of times of p and n transistor different and signal dependent
- Dummy switch: clocked by inverse Clk
 - Q2 is 1/2 size of Q1 to match charge injection
 - up to 5 times better than without dummy switch (for fast Clk edges)
 - difficult to make clocks fast enough so exactly 1/2 charge is injected

Finite Slopes of Clock Edges

- Ideal sampling time at the negative-going zero-crossing of φ_{clk}
- Actual sampling at V_{Clk} = V_{in} + V_{tn}
 Q1 turns off
- True sampling time depends on value of V_{in}: distortion

S/H With High Input Impedance

- When the clock φ_{clk} is high, the circuit responds similarly to an Opamp in a unity-gain feedback configuration
- When goes low, V_{in} at that time is stored on C_{hld}, similarly to a simple S/H
- DC offset of buffer is divided by the gain of input Opamp
- Disadvantages:
 - in hold mode, the Opamp is open loop, resulting in its output saturating at one of the power supply voltages
 - Opamp must have fast slew rate to go from saturation to Vin in next Clk cycle
 - Sample time, charge injection input signal dependent
 - Speed reduced due to overall feedback

Reduced Slew Rate Requirement

- In Hold mode, Q2 keeps the output of the first Opamp close to the voltage it will need to be at when the S/H goes into track mode
- Sample time, charge injection input signal dependent

Input Signal Independence

- C_{hld} is not to Gnd
- Q1 always at virtual ground; signals on both sides are independent of V_{in}
 - Sample time error, charge injection: independent of V_{in}
 - Charge injection causes ONLY DC offset
- Q2 used to clamp Opamp1 output near ground in hold mode
 - Reduces slew rate requirement snd signal feedthrough
- Slower due to two Opamps in feedback

Reduced Offset (Single Ended)

- Charge injected by Q1 matched by Q2 into C'_{hld}
 - If fully differential design, matching occurs naturally leading to lower offset.

Reduced Offset (Differential)

Gnd is common mode voltage

Example 1: BiCMOS

- Inverting S/H
 - When in track mode, Q1 is on and Q2 is off, resulting in the S/H acting as an inverting low-pass circuit with $\Omega_{-3dB} = 1/(RC)$
 - When Q1 turns off, V_{out} will remain constant
- Needs Opamp capable of driving resistive loads
 - Difficult to implement in CMOS
- Good high-speed BiCMOS configuration
- Q2 minimizes feedthrough

- Opamp in unity gain follower mode during track
- In hold mode input signal is stored across C1, since Q1 is turned off
- Charge injection of transistors cancel
- Clock signals are signal dependent
- Good speed, moderate accuracy

- Hold capacitor is large Miller capacitor
- Can use smaller capacitors and switches good speed
- If Q2 turned off first, injection of Q1 small due to Miller effect

• Miller capacitor:

$$\mathbf{C}_{\mathsf{hld-eff}} = (1 + \mathsf{A}) \left(\frac{\mathsf{C}_1 \mathsf{C}_2}{\mathsf{C}_1 + \mathsf{C}_2} \right)$$

- Higher speed amplifier possible as Opamp output voltage swing is small
- Allows small capacitors and switch sizes

Sample Mode

- Sample mode:
 - Opamp is reset
 - C1 and C2 between Vin and V_{_} of Opamp

Hold mode:
– Effective hold cap is C_{hld-eff}

- For lower frequency application
 - Based on switched capacitor circuits
- During ϕ_1 :
 - $\rm C_{H}$ is connected between the input signal source and the inverting input of the Opamp
 - inverting input and the output of the opamp are connected together
 - This causes the voltages at both of these nodes to be equal to the input-offset voltage of the Opamp, therefore C_H charged to V_{in} V_{off}
- Accurate since offset cancellation performed
 - During ϕ_1 Vout = Vin independent of the Opamp offset voltage
- Slow since Opamp swings from 0 to V_{in} every cycle
- Not really a S/H
 - Output not valid during ϕ_1

- Improved accuracy
- High input impedance
- $\phi_{1a} \rightarrow advanced$
- Charge injection of Q4 and Q5 cancel (and is signal independent)
- Charge injection of Q1 and Q2: no effect
- Charge injection of Q3: reduced as before

Switched Capacitor Circuits

- Switched capacitor (SC) circuits are probably the most popular integrated circuit analogue circuit technique
- SC operate at discrete time / analogue amplitude
- For the analysis z-transform is most appropriate
- Especially popular for filters
 - Good linearity, accurate frequency response, high dynamic range
 - Filter coefficients make use of capacitance ratios

Switched Capacitor Circuits

- Basic principles
 - Signal entered and read out as voltages, but processed internally as charges on capacitors.
 - Since CMOS preserves charges well, high SNR and linearity are possible.
- Significance
 - Replaces absolute accuracy of R & C (10-30%) with matching accuracy of C (0.05-0.2%)
 - Can realize accurate and tunable large RC time constants
 - Can realize high-order circuits with high dynamic range
 - Allows (medium-) accuracy data conversion without trimming
 - Can realize large mixed-mode systems for telephony, audio, aerospace, consumer etc. applications on a single CMOS chip
 - Tilted the MOS VS. BJT contest decisively.
Opamps

- Ideal Opamps usually assumed
- Important non-idealities
 - dc gain: sets the accuracy of charge transfer hence, transfer-function accuracy
 - unity-gain frequency, phase margin & slew-rate: sets the max clocking frequency.
 - A general rule is that unity-gain frequency should be 5 times (or more) higher than the clock-frequency
 - dc offset: Can create dc offset at output. Circuit techniques to combat this which also reduce 1/f noise.

Double Poly Capacitors

- Substantial parasitics with large bottom plate capacitance (20% of C_1)
- Sometimes metal-metal capacitors are used but have even larger parasitic capacitances.

cross-section view

Switches

- Mosfet switches are good switches off-resistance near GΩ range
- on-resistance in 100Ω to $5k\Omega$ range (depends on transistor sizing)
- However, have non-linear parasitic capacitances
- When ϕ high, switch is on

Non-overlapping clocks

- Non-overlapping clocks both clocks are never High at same time
- Needed to ensure charge is not inadvertently lost
- Integer values occur at end of ϕ_1 i.e. (n-1), n, (n+1) ...
- End of ϕ_2 is 1/2 of integer value, i.e. (n-3/2), (n-1/2), (n+1/2) ...

Basic Operating Principle

Switched-capacitor resistor equivalent

- C_1 charged to V_1 and then to V_2 during each Clk period T

$$\Delta Q_1 = C_1 (V_1 - V_2)$$

- Average current is given by:

$$I_{avg} = \frac{C_1(V_1 - V_2)}{T}$$

$$\Delta Q = C_1(V_1 - V_2)$$
 every clock period

$$V_{1} \sim W \sim V_{2}$$

$$R_{eq} = \frac{T}{C_1}$$

Basic Operating Principle

Switched-capacitor resistor equivalent

- For equivalent resistor can be calculated from:

$$I_{eq} = \frac{V_1 - V_2}{R_{eq}}$$

- Therefore:

$$R_{eq} = \frac{T}{C_1} = \frac{1}{C_1 f_s}$$

- This equivalence is useful when looking at low-frequency portion of a SC-circuit
- For higher frequencies, discrete-time analysis is used.

Example Resistor Equivalence

What is the equivalent resistance of a 5pF capacitance sampled at a clock frequency of 100kHz?

$$R_{eq} = \frac{1}{(5 \times 10^{-12})(100 \times 10^3)} = 2M\Omega$$

- large equivalent resistance of $2M\Omega$ can be realized
- Requires only 2 transistors, a clock and a relatively small capacitance
- In a typical CMOS process, such a large resistor would normally require a huge amount of silicon area.

- Switched capacitor discrete time integrator
 - Extra switch at the output indicates that the output signal is valid at the end of ϕ_1
 - Input can change at any point in time it is sampled at the end of ϕ_1
 - Simplest circuit design but sensitive to parasitics (not shown)
 - Calculate $v_{co}(t)$ at the end ϕ_1 of as a function of $v_{ci}(t)$ at the end of ϕ_1

• Circuit diagrams for ϕ_1 high

and for ϕ_2 high

- Charge on C_2 is equal to $C_2 * v_{co}(nT-T)$ when ϕ_1 is turning off
- Charge on C_1 is equal to $C_1^* v_{ci}(nT-T)$ when ϕ_1 is turning off
- When φ₂ goes high C₁ is discharged (due to virtual ground on its top plate)
 - Charge is transferred to C₂ adding to the charge present there
 - Positive input voltage will result in a negative voltage across C₂ (inverting integrator)
- So, at the end of ϕ_2 : $C_2 v_{co}(nT T/2) = C_2 v_{co}(nT T) C_1 v_{ci}(nT T)$

• Circuit diagrams for ϕ_1 high

and for ϕ_2 high

 ϕ_1 on

 ϕ_2 on

- What is the charge on C₂ at the end of φ₁ (as indicated by the additional φ₁ switch at the output)?
 - When ϕ_2 turns off, the charge on C_2 is preserved during the next ϕ_1 phase (until ϕ_2 turns on again in the next cycle)
 - Therefore the charge on C₂ at time nT at the end of the next ϕ_1 is equal to that at time (nT-T/2) $C_2 v_{co}(nT) = C_2 v_{co}(nT T/2)$
- Therefore:

$$C_2 v_{co}(nT) = C_2 v_{co}(nT - T) - C_1 v_{ci}(nT - T)$$

• Circuit diagrams for ϕ_1 high

and for ϕ_2 high

• Dividing by C_2 and introducing discrete time variables $v_i(n) = v_{ci}(nT)$ and $v_o(n) = v_{co}(nT)$: $v_o(n) = v_o(n-1) - \frac{C_1}{C_2}v_i(n-1)$

- Taking the z-transform: $V_o(z) = z^{-1}V_o(z) \frac{C_1}{C_2}z^{-1}V_1(z)$
- Integrator Transfer Function: $H(z) \equiv \frac{V_o(z)}{V_i(z)} = -\left(\frac{C_1}{C_2}\right)\frac{1}{z-1}$

• Circuit diagrams for ϕ_1 high

and for ϕ_2 high

 ϕ_1 on

Integrator Transfer Function:

$$H(z) \equiv \frac{V_o(z)}{V_i(z)} = -\left(\frac{C_1}{C_2}\right)\frac{1}{z-1}$$

- Gain depends only on capacitor ratios!
 - Very accurate transfer functions can be realised!

Typical Waveforms

• Transfer function is only valid at the time nT just before the end of ϕ_1

- Discrete time relationship of $v_{oi}(t)$ and $v_{co}(t)$ is valid only at times (nT) - at the end of φ_1

Low Frequency Behaviour

• The transfer function can be rewritten as: H(z)

$$) = -\left(\frac{C_1}{C_2}\right) \frac{z^{-1/2}}{z^{1/2} - z^{-1/2}}$$

• Recall that: $z = e^{j\omega T} = \cos(\omega T) + j\sin(\omega T)$

• With
$$T = \frac{1}{f_s} \rightarrow \frac{z^{1/2} = \cos\left(\frac{\omega T}{2}\right) + j\sin\left(\frac{\omega T}{2}\right)}{z^{-1/2} = \cos\left(\frac{\omega T}{2}\right) - j\sin\left(\frac{\omega T}{2}\right)}$$

- Therefore: $H(e^{j\omega T}) = -\left(\frac{C_1}{C_2}\right) \frac{\cos\left(\frac{\omega T}{2}\right) - j\sin\left(\frac{\omega T}{2}\right)}{j2\sin\left(\frac{\omega T}{2}\right)}$
- For ωT<<1 (i.e. at low frequency)

$$H(e^{j\omega T}) \cong -\left(\frac{C_1}{C_2}\right)\frac{1}{j\omega T}$$

Low Frequency Behaviour

For ωT<<1 (i.e. at low frequency)

$$H(e^{j\omega T}) \cong -\left(\frac{C_1}{C_2}\right)\frac{1}{j\omega T}$$

• This is the same transfer function as a continuous-time integrator with a gain constant of: $C_{1,1}$

$$K_I \cong \frac{C_1}{C_2} \frac{1}{T}$$

• The gain is a function of the capacitor ratio and the sampling time

Parasitic Effects

 Assuming double poly capacitors, the circuit diagram with parasitic capacitances is:

The transfer function modifies to:

$$H(z) = -\left(\frac{C_1 + C_{p1}}{C_2}\right) \frac{1}{z - 1}$$

 C_{p1} : parasitic capacitances of C_1 , top plate and nonlinear capacitances of the two switches C_{p2} : parasitic capacitances of C_1 , bottom plate C_{p3} : parasitic capacitances of C_2 , top plate and input capacitances of Opamp and of ϕ_2 switch C_{p3} : parasitic capacitances of C2, bottom plate (and output capacitance)

 Therefore, gain coefficient is not well controlled and partially nonlinear, as C_{p1} is non-linear

- By using 2 extra switches, integrator can be made insensitive to parasitic capacitances
 - more accurate transfer-functions
 - better linearity (since non-linear capacitances unimportant)
- Major development for SC circuits

• Circuit diagrams for ϕ_1 high

and for ϕ_2 high

 Same analysis as before except that C₁ is switched in polarity before discharging into C₂

- This results in $v_{co}(t)$ rising for a positive $v_{ci}(nT-T)$

• Therefore:

$$H(z) \equiv \frac{V_o(z)}{V_i(z)} = \left(\frac{C_1}{C_2}\right)\frac{1}{z-1}$$

- Non-inverting amplifier!
- But full time period delay as $H(z) = \frac{C_1}{C_2} \frac{z^{-1}}{1-z^{-1}}$

Circuit diagram with parasitic capacitances

- C_{D3} has little effect since it is connected to virtual Ground
- C_{p4} has little effect since it is driven by output
- C_{p2} has little effect since it is either connected to virtual Ground or physical Ground

- C_{p1} is continuously being charged to v_i(n) and discharged to ground
- φ₁ high: the fact that C_{p1} is also charged to v_i(n-1) does not affect charge on C₁
- φ₂ high: C_{p1} discharges through φ₂ switch attached to its node and does not affect the charge accumulating on C₂
- While the parasitic capacitances may slow down settling time behaviour, they do not affect the discrete time difference equation

Parasitic Insensitive Inverting Integrator

Present output depends on present input (delay-free)

$$H(z) \equiv \frac{V_o(z)}{V_i(z)} = -\left(\frac{C_1}{C_2}\right)\frac{z}{z-1} \quad \text{or} \quad H(z) = -\frac{C_1}{C_2}\frac{1}{1-z^{-1}}$$

- Delay-free integrator has negative gain while delaying integrator has positive gain
- Delay free, parasitic insensitive inverting integrator:
 - Same circuit, but switch phases at C₁, top plate, are swapped

$$\begin{split} C_2 v_{co}(nT - T/2) &= C_2 v_{co}(nT - T) \\ C_2 v_{co}(nT) &= C_2 v_{co}(nT - T/2) - C_1 v_{ci}(nT) \end{split}$$

Signal Flow Graph Analysis

• For more complex circuits charge analysis can be tedious

Signal Flow Graph Analysis

 Superposition is used on the input-output relationship for V₂(z) and V₃(z) are given by:

$$\frac{V_o(z)}{V_2(z)} = \frac{C_2}{C_A} \frac{z^{-1}}{1 - z^{-1}}$$
$$\frac{V_o(z)}{V_3(z)} = -\frac{C_3}{C_A} \frac{1}{1 - z^{-1}}$$

 For the input V₁(z), the input-output relationship is simply an inverting gain stage, with the input being sampled at the end of φ₁

$$\frac{V_o(z)}{V_1(z)} = -\frac{C_1}{C_A}$$

$$V_{D}(z) = -\frac{C_{1}}{C_{A}}V_{1}(z) + \frac{C_{2}}{C_{A}}\frac{z^{-1}}{1 - z^{-1}}V_{2}(z) - \frac{C_{3}}{C_{A}}\frac{1}{1 - z^{-1}}V_{3}(z)$$

$$V_o(z) = -\frac{C_1}{C_A}V_1(z) + \frac{C_2}{C_A}\frac{1}{1-z}V_2(z) - \frac{C_3}{C_A}\frac{z}{z-1}V_3(z)$$

Signal Flow Graph Analysis

- In a flow graph the Opamp is separated from the inputs
- Opamp is represented by: $\frac{1}{C_A} \frac{1}{1-z^{-1}}$

- Non-switched capacitor input is represented by a gain of: $-C_1(1-z^{-1})$
- Delaying switched capacitor is represented by a gain of: C_{-7}^{-1}

Non-delaying switched capacitor is represented by a gain of:
$$-C_3$$

• Consider a general first order filter

- Start with an active-RC structure and replace resistors with SC equivalents
- Analyse using discrete-time analysis

Applying the flow chart rules

Transfer function can easily be derived

$$C_{A}(1-z^{-1})V_{o}(z) = -C_{3}V_{o}(z) - C_{2}V_{i}(z) - C_{1}(1-z^{-1})V_{i}(z)$$

$$H(z) = \frac{V_o(z)}{V_i(z)} = -\frac{\left(\frac{C_1}{C_A}\right)(1 - z^{-1}) + \left(\frac{C_2}{C_A}\right)}{1 - z^{-1} + \frac{C_3}{C_A}}$$
$$= -\frac{\left(\frac{C_1 + C_2}{C_A}\right)z - \frac{C_1}{C_A}}{\left(1 + \frac{C_3}{C_A}\right)z - 1}$$

Find the pole of the transfer function by equating the denominator to zero:

$$z_p = \frac{C_A}{C_A + C_3}$$

- − For positive capacitance values, z_p is restricted to the real axis between 0 and 1 → circuit is always stable
- The zero is found by equating the numerator to zero to yield:

$$z_z = \frac{C_1}{C_1 + C_2}$$

Also restricted to real axis between 0 and 1

The DC gain found evaluating the transfer function at z=1:

$$H(1) = \frac{-C_2}{C_3}$$

Numerical Example: First Order Filter

- Find the capacitance values needed for a first-order SC-circuit such that its 3dB point is at 10kHz when a clock frequency of 100kHz is used.
 - It is also desired that the filter have zero gain at 50kHz (i.e. z=-1) and the DC gain be unity
 - Assume C_A=10pF
- Solution:
 - Making use of the bilinear transform $p = \frac{z-1}{z+1}$ the zero at -1 is mapped to $\Omega = \infty$
 - The frequency warping maps the -3dB frequency of 10kHz (or 0.2π rad/sample) to: (0.2 π)

$$\Omega = \tan\left(\frac{0.2\pi}{2}\right) = 0.3249$$

in the continuous-time domain leading to the continuous-time pole, p_p, required being: p_p=-0.3249

Numerical Example: First Order Filter

This pole is mapped backed to z_p given by:

$$z_p = \frac{1+p_p}{1-p_p} = 0.5095$$

• Therefore, the transfer function H(z) is given by:

$$H(z) = \frac{k(z+1)}{z - 0.5095}$$

 where k is determined by setting the DC gain to one (i.e. H(1)=1) resulting in:

$$H(z) = \frac{0.24525(z+1)}{z-0.5095} \quad \text{or:} \quad H(z) = \frac{0.4814z + 0.4814}{1.9627z - 1}$$

- Equating the these coefficients with the general first order transfer filter transfer function (and assuming C_A=10pF): C₁=4.814pF; C₂=-9.628pF; C₃=9.628pF
 - The negative capacitance can realised by using a differential input

Switch Sharing

- Some switches of the first order SC circuit are redundant
- Switches that are always connected to the some potential can be shared
 - The top plate of C_2 and C_3 are always switched to virtual Ground of the Opamp and physical Ground at the same time.
 - Therefore one pair of these switches can be eliminated

- Most modern SC filters are fully-differential
- Difference between two voltages represents signal (balanced around a common-mode voltage)
- Common-mode noise, drift, etc. is rejected
- Even order distortion terms cancel

- Fully differential first order filter
 - Two identical copies of the single-ended version

Negative continuous-time input: equivalent to a negative C₁

- Note that fully-differential version is essentially two copies of single-ended version, however ... area penalty not twice
- Only one opamp needed (though common-mode circuit also needed)
- Input and output signal swings have been doubled so that same dynamic range can be achieved with half capacitor sizes (from kt/C analysis)
- Switches can be reduced in size since small caps used
- However, there is more wiring in fully-differ version but better noise and distortion performance

Low-Q Biquad Filter

Higher order filters require biquadratic transfer functions

$$H_a(s) \equiv \frac{V_{out}(s)}{V_{in}(s)} = -\frac{k_2 s^2 + k_1 s + k_o}{s^2 + \left(\frac{\omega_o}{Q}\right)s + \omega_o^2}$$

Using flow chart analysis, one can obtain:

Low-Q Biquad Filter

Implemented as a SC:

Low-Q Biquad Filter

Flow chart representation:

$$H(z) = \frac{V_o(z)}{V_i(z)} = -\frac{(K_2 + K_3)z^2 + (K_1K_5 - K_2 - 2K_3)z + K_3}{(1 + K_6)z^2 + (K_4K_5 - K_6 - 2)z + 1}$$

Low-Q Biquad Filter Design $H(z) = -\frac{a_2 z^2 + a_1 z + a_0}{b_2 z^2 + b_1 z + 1}$

 The individual coefficients of "z" can be equated by comparing to the transfer function

$$K_{3} = a_{0}$$

$$K_{2} = a_{2} - a_{0}$$

$$K_{1}K_{5} = a_{0} + a_{1} + a_{2}$$

$$K_{6} = b_{2} - 1$$

$$K_{4}K_{5} = b_{1} + b_{2} + 1$$

A degree of freedom is available here in setting internal V₁(z) output

Low-Q Biquad Filter Design

- Can do proper dynamic range scaling
- Or let the time-constants of 2 integrators be equal by:

$$K_4 = K_5 = \sqrt{b_1 + b_2 + 1}$$

- Low-Q Biquad Capacitance Ratio
- Comparing resistor circuit to SC circuit, we have

$$K_4 \approx K_5 \approx \omega_o T$$
$$K_6 \approx \frac{\omega_o T}{Q}$$

• However, the sampling-rate, 1/T , is typically much larger that the approximated pole-frequency ω_0 , so ω_0 T<<1

Low-Q Biquad Capacitance Ratio

- Thus, the largest capacitors determining pole positions are the integrating capacitors C₁ and C₂
- If Q<1, the smallest capacitors are K₄C₁ and K₅C₂ resulting in an approximate capacitance spread of 1/ (ω₀ T)
- If Q<1, then the smallest capacitor would be K_6C_2 resulting in an approximate capacitance spread of Q/(ω_0 T)
 - can be quite large for Q>>1
 - due to a large damping resistor Q/ ω_{0}

High-Q Biquad

- Use a high-Q biquad filter circuit when for Q>>1
- Q-damping done with a cap around both integrators
- Alternative active-RC prototype filter:

High-Q Biquad

- SC implementation
- Q-damping now performed by K₆C₁

High-Q Biquad

- Input K₁C₁: major path for lowpass
- Input K₂C₁: major path for band-pass filters
- Input K₃C₂: major path for high-pass filters
- General transfer-function is:

$$H(z) \equiv \frac{V_o(z)}{V_i(z)} = -\frac{K_3 z^2 + (K_1 K_5 + K_2 K_5 - 2K_3)z + (K_3 - K_2 K_5)}{z^2 + (K_4 K_5 + K_5 K_6 - 2)z + (1 - K_5 K_6)}$$

If matched to the following general form:

$$K_{1}K_{5} = a_{0} - a_{0}$$

$$K_{2}K_{5} = a_{2} - a_{0}$$

$$K_{3} = a_{2}$$

$$K_{4}K_{5} = 1 + b_{0} + b_{1}$$

$$K_5 K_6 = 1 - b_0$$

- Freedom to determine the coefficients
 - Reasonable choice is: $K_4 = K_5 = \sqrt{1 + b_0 + b_1}$

Charge Injection

- To reduce charge injection (thereby improving distortion), turn off certain switches first
- Advance φ_{1a} and φ_{2a} so that only their charge injection affect circuit

 result is a dc offset

Charge Injection

- Note: φ_{2a} connected to ground φ_{1a} while connected to virtual ground, therefore:
 - can use single n-channel transistors
 - charge injection NOT signal dependent

$$Q_{CH} = -WLC_{ox}V_{eff} = -WLC_{ox}(V_{GS} - V_t)$$

- Charge related to V_{GS} and V_t
 - V_t related to substrate-source voltage, thus V_t remains constant
- Source of Q₃ and Q₄ remains at 0 volts → amount of charge injected by Q₃, Q₄ is not signal dependent and can be considered as a DC offset

Charge Injection Example

- Estimate DC offset due to channel-charge injection when C1=0 and C2 = C4 = 10C3 = 10pF
- Assume switches Q₃, Q₄ have V_t=0.8V, W=30µm, L=0.8µm and C_{ox}=1.9e-3 pF/mm², and power supplies are ±2.5V
- Solution:
- Channel charge of Q3, Q4 (when on) is:

$$Q_{CH3} = Q_{CH4} = -(30)(0.8)(0.0019)(2.5 - 0.8)$$

= $-77.5 \times 10^{-3} \ pC$

DC feedback keeps Opamp input at virtual ground (0V)

Charge Injection Example

- Charge transfer into given by: $Q_{C_3} = -C_3 v_{out}$
- We estimate half channel-charges of Q₃, Q₄, are injected to the virtual ground leading to: $\frac{1}{2}(Q_{CH3} + Q_{CH4}) = Q_{C_3}$

• Thus:
$$v_{out} = \frac{77.5 \times 10^{-5} \ pC}{1 \ pF} = 78 \ \text{mV}$$

 DC offset affected by the capacitor sizes, switch sizes and power supply voltage

SC Gain Circuits – Parallel RC

- SC circuits can be used for signal amplification
- General Gain circuit with two parallel RC:

• SC implementation:

Resettable Gain Circuit

- Resets integrating capacitor C₂ every clock cycle
- performs offset cancellation
- also highpass filters 1/f noise of Opamp
- However, requires a high slew-rate from Opamp

- Resettable Gain Circuit
- Offset cancellation

Capacitive Reset

- Eliminate slew problem and still cancel offset by coupling Opamp's output to inverting input
- C₄ is optional de-glitching capacitor

 $v_{out}(n) = -\left(\frac{C_1}{C_2}\right)v_{in}(n)$

- Capacitive Reset
- During Reset

During valid output

- Differential Capacitive Reset
- Accepts differential inputs and partially cancels switch clockfeedthrough

Correlated Double Sampling (CDS)

- Preceding SC gain circuit is an example of CDS
 - Minimizes errors due to Opamp offset and 1/f noise
- When CDS used, Opamps should have low thermal noise (often use nchannel input transistors)
- Often use CDS in only a few stages:
 - input stage for oversampling converter
 - some stages in a filter (where low-frequency gain is high)
- Basic approach:
 - Calibration phase: store input offset voltage
 - Operation phase: error subtracted from signal

Better High-Freq CDS Amplifier

- ϕ_2 : C_1' , C_2' used but include errors
- ϕ_1 : C_1' , C_2' used but here no offset errors

CDS Integrator

- ϕ_1 : sample offset on C₂'
- ϕ_2 : C_2 placed in series with Opamp to reduce error
- Offset errors reduced by Opamp gain
- Can also apply this technique to gain amps

SC Amplitude Modulator

- Square wave modulate by ±1 (i.e. V_{out} = ±V_{in})
- Makes use of cap-reset gain circuit
- ϕ_{ca} : is the modulating signal

SC Full-Wave Rectifier

- Use square wave modulator and comparator to make
- For proper operation, comparator output should change synchronously with the sampling instances

SC Peak Detector

- Left circuit can be fast but less accurate
- Right circuit is more accurate due to feedback but slower due to need for compensation
 - circuit might also slew so Opamp's output should be clamped

